0%

Week7 Neural Networks Learning

一、Cost Function and Backpropagation

神经网络的损失函数: \[J(\Theta) = - \frac{1}{m} \sum_{i=1}^m \sum_{k=1}^K \left[y^{(i)}_k \log ((h_\Theta (x^{(i)}))_k) + (1 - y^{(i)}_k)\log (1 - (h_\Theta(x^{(i)}))_k)\right] + \frac{\lambda}{2m}\sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} ( \Theta_{j,i}^{(l)})^2\]
在这里插入图片描述
这个cost function是在logistic regression基础上演变而来,只是神经网络有很多输出结点,而logistic regression只有一个输出结点,所以这个cost function只是把所有的K个输出结点的损失函数进行累加。

得到cost function后,为了寻找使得\(J(\theta)\)最小的那组参数\(\theta\),我们需要知道\(J(\theta)\)关于每个\(\theta\)的偏导数,而后向传播算法可以帮助我们计算偏导数:
在这里插入图片描述
对于每个训练样本,先利用forward propagation计算每一层的\(a\)
在这里插入图片描述
接着利用样本真实标签\(y^{(t)}\)计算最后一层的误差值;

之后从右向左计算每一层(输入层除外)的误差:
在这里插入图片描述
这样每个样本一次正向、一次反向来更新误差矩阵:
在这里插入图片描述
向量化表示:
在这里插入图片描述
最后,就可以得到偏导数:
在这里插入图片描述
在这里插入图片描述

二、Backpropagation in Pratice

为了使用fminunc等高级的优化方法来求得cost function的最小值,所以将\(\theta\)这个矩阵展成向量传入fminunc,完成后可以通过reshape从向量中提取\(\theta^{(1)}、\theta^{(2)}\)等:
在这里插入图片描述

为了确保我们使用Backpropagation求得的偏导数的正确性,可以使用Gradient Checking(很慢)来检验:
根据偏导数定义: \[\dfrac{\partial}{\partial\Theta_j}J(\Theta) \approx \dfrac{J(\Theta_1, \dots, \Theta_j + \epsilon, \dots, \Theta_n) - J(\Theta_1, \dots, \Theta_j - \epsilon, \dots, \Theta_n)}{2\epsilon}\] \[一般\epsilon=10^{-4}\] 通过将这种方式计算的偏导数与之前Backpropagation求得的偏导数比较,即可得知Backpropagation的正确性。

之前在Linear Regression和Logistic Regression,我们可以用全0来初始化\(\theta\),但在神经网络中,这样做会有问题,所以采用随机初始化
在这里插入图片描述
最后,从整体捋一遍流程:
1、选择网络结构: 在这里插入图片描述
2、训练神经网络:

对每一个训练样本:
在这里插入图片描述